The field of natural language processing (NLP) aims at getting computers to perform useful and interesting tasks with human language. This course introduces students to the 3 pillars underlying modern NLP: probabilistic language models, simple neural networks with a focus on gradient based learning, and vector-based meaning representations in the form of word embeddings. At the end of the course, students will be able to implement and analyze probabilistic language models based on N-grams, text classifiers using logistic regression and gradient-based learning, and vector-based approaches to word meaning and text classification.

Cultivez votre carrière grâce à des programmes dirigés par des experts, des certificats prêts à l'emploi et des moyens d'évoluer sur 10 000 . Le tout pour 25 $US/mois, facturé annuellement. Économisez


Expérience recommandée
Ce que vous apprendrez
Analyze corpora to develop effective lexicons using subword tokenization.
Develop language models that can assign probabilities to texts.
Design, implement, and evaluate the effectiveness of text classifiers using gradient-based learning techniques.
Design, implement and evaluate unsupervised methods for learning word embeddings.
Détails à connaître

Ajouter à votre profil LinkedIn
mars 2025
4 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées


Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Il y a 4 modules dans ce cours
This first week of Fundamentals of Natural Language Processing introduces the fundamental concepts of natural language processing (NLP), focusing on how computers process and analyze human language. You will explore key linguistic structures, including words and morphology, and learn essential techniques for text normalization and tokenization.
Inclus
5 vidéos5 lectures1 devoir
This week explores foundational language modeling techniques, focusing on n-gram models and their role in statistical Natural Language Processing. You will learn how n-gram language models are constructed, smoothed, and evaluated for effectiveness.
Inclus
4 vidéos4 lectures1 devoir1 devoir de programmation
This week introduces text classification and explores logistic regression as a powerful classification technique. You will learn how logistic regression models work, including key mathematical concepts such as the logit function, gradients, and stochastic gradient descent. The week also covers evaluation metrics for assessing classifier performance.
Inclus
6 vidéos3 lectures1 devoir1 devoir de programmation
This final week explores how words can be represented as vectors in a high-dimensional space, allowing computational models to capture semantic relationships between words. You will learn about both sparse and dense vector representations, including TF-IDF, Pointwise Mutual Information (PMI), Latent Semantic Analysis (LSA), and Word2Vec. The module also covers techniques for evaluating and applying word embeddings.
Inclus
7 vidéos4 lectures1 devoir1 devoir de programmation
Instructeur

Offert par
Recommandé si vous êtes intéressé(e) par Algorithms
University of Colorado Boulder
DeepLearning.AI
Edureka
DeepLearning.AI
Préparer un diplôme
Ce site cours fait partie du (des) programme(s) diplômant(s) suivant(s) proposé(s) par University of Colorado Boulder. Si vous êtes admis et que vous vous inscrivez, les cours que vous avez suivis peuvent compter pour l'apprentissage de votre diplôme et vos progrès peuvent être transférés avec vous.¹
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Learners should be proficient in Python programming including the use of packages such as numpy, scikit-learn and pandas. Students should be proficient in data structures and basic topics in algorithm design, such as sorting and searching, dynamic programming, and algorithm analysis. Students should also have basic familiarity with introductory concepts from calculus, discrete probability, and linear algebra.
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
Plus de questions
Aide financière disponible,