El curso "Deep Learning" ofrece una introducciĂłn práctica a las redes neuronales artificiales y su aplicaciĂłn en diversas áreas como el reconocimiento de dĂgitos manuscritos, detecciĂłn de cáncer y generaciĂłn de texto. Utilizando TensorFlow y Keras, los participantes aprenderán a construir y entrenar modelos de redes neuronales, incluyendo CNN y RNN, a travĂ©s de ejemplos y ejercicios prácticos.

Cultivate your career with expert-led programs, job-ready certificates, and 10,000 ways to grow. All for $25/month, billed annually. Save now


Deep Learning: Del Concepto a la Práctica
This course is part of Ciencia de Datos e IA : De los Fundamentos a la Práctica Specialization


Instructors: Eduardo RodrĂguez del Angel
Included with
What you'll learn
Describir las técnicas de Deep Learning utilizando TensorFlow y Keras para resolver problemas de reconocimiento de patrones y generación de texto.
Details to know

Add to your LinkedIn profile
March 2025
27 assignments
See how employees at top companies are mastering in-demand skills

Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate


Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review

There are 4 modules in this course
En esta secciĂłn, los estudiantes serán introducidos al mundo del Deep Learning, comenzando con una explicaciĂłn de las redes neuronales artificiales. Se explorarán los componentes y la estructura de las NN, y se realizará un primer proyecto práctico de programaciĂłn para reconocer dĂgitos manuscritos.
What's included
13 videos1 reading11 assignments
Esta secciĂłn se centra en el uso de TensorFlow y Keras para la construcciĂłn y entrenamiento de redes neuronales. Los estudiantes aprenderán a implementar modelos para la detecciĂłn de dĂgitos manuscritos y el diagnĂłstico de cáncer de mama, utilizando estas poderosas herramientas de Deep Learning
What's included
10 videos2 readings6 assignments
Explorarás las redes neuronales convolucionales (CNN), una técnica avanzada para el procesamiento de imágenes. Se desarrollarán proyectos prácticos para el reconocimiento de términos manuscritos y el lenguaje de señas, aprendiendo a guardar, cargar y compartir los modelos de redes neuronales.
What's included
14 videos1 reading8 assignments
Esta secciĂłn se dedica a las redes neuronales recurrentes (RNN) y las Long Short-Term Memory (LSTM), utilizadas principalmente para la generaciĂłn de texto. Los contenidos de está secciĂłn te permitirán comprender cĂłmo crear modelos que generen texto de manera coherente, practicando con ejemplos y ejercicios especĂficos.
What's included
8 videos3 readings2 assignments
Offered by
Recommended if you're interested in Data Analysis
Illinois Tech
DeepLearning.AI
Coursera Project Network
Why people choose Coursera for their career




New to Data Analysis? Start here.

Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
More questions
Financial aid available,